

EUVL into production — Update on ASML's NXE platform

Judon Stoeldraijer, David Ockwell, Christian Wagner

Outline

- Introduction
 - System roadmap
 - Platform layout
- Building the NXE:3100
 - NXE3100 main specifications & technology
 - Vacuum technology
 - Design & integration strategy
 - Status of main system modules
 - Preparation for volume production & shipment
- Outlook & summary

TWINSCAN EUV Product Roadmap

2006

ADT

Resolution = 32 nm NA = 0.25, σ = 0.5 Overlay < 7 nm Throughput 5 WPH 2010

NXE:3100

Resolution = 27 nm NA = 0.25, σ = 0.8 Overlay < 4.5 nm Throughput 60 WPH 2012

NXE:3300B

Resolution = 22 nm NA = 0.32, σ = 0.2-0.9 Overlay < 3.5 nm Throughput 125 WPH 2013

NXE:3300C

Resolution = 18/16* nm NA = 0.32, OAI Overlay < 3 nm Throughput 150 WPH

Main improvements

- 1) New EUV platform :NXE
- 2) Improved low flare optics
- 3) New high σ illuminator
- 4) New high power LPP source
- 5) Dual stages

Main improvements

- 1) New high NA 6 mirror lens
- 2) New high efficiency illuminator
- 3) Off-Axis illumination option
- 4) Source power increase
- 5) Reduced footprint

Platform enhancements

- 1) Source power increase
- * Requires <7nm resist diffusion length

NXE lithography platform system layout

Outline

- Introduction
 - System roadmap
 - Platform layout
- Building the NXE:3100
 - NXE3100 main specifications & technology
 - Vacuum technology
 - Design & integration strategy
 - Status of main system modules
 - Preparation for volume production & shipment
- Outlook & summary

NXE:3100 main specifications

- NA=0.25
- Sigma=0.8
- Resolution 27nm
- SMO=4.5nm
- MMO=7.0nm

- TPT=60wph (10mJ/cm² resist)
- 1st generation of NXE platform

NXE platform leverages on its predecessors

Module	Learning from
Optics	Based on ADT Optics, improved wave front and flare, higher sigma in illuminator (0.5 to 0.8)
Metrology (TIS, ILIAS)	Proven XT principle adapted to vacuum
Reticle Stage	Building on Alpha and advanced TWINSCAN; E-clamp from Alpha; new REMA (X and Y)
Reticle Handler	Fully automated using in-vacuum robot and internal library with 6 slots
Wafer Stage	Dual planar stage + balance mass; E-clamp
Alignment/Level sensor	Vacuum compatible Smash & XT level sensor
Wafer Handler	New vacuum robot, load-lock and pre-aligner, NXT robot for atmospheric part
Vacuum System	Based on ADT layout, factory way of working adapted to material specification and handling

Achieving an Ultra Clean Vacuum (UCV) by right material selection, equipment invests & procedures

- Outgassing budget for all modules
- Every material is being tested
- Investments made in the right equipment to enable clean production and qualification
- Cleaning of all materials and modules is integrated as a part of Supply Chain and internal assembly
- Procedures and training for handling and manufacturing, in-house and at suppliers

High vacuum test chamber + mass spec for qualification

Vacuum Vessels Outgassing requirements reached in practice

Building the NXE:3100

Proto source is Installed and Operational at ASML

- Next steps:
 - Integrate scanner source control
 - Dose control using ASML sensors
 - Integrate in situ plasma positioning control

- Droplet generation (30µm diameter) and laser targeting confirmed
- Control system is operational

ASML

CO₂ Laser amplifiers in subfab

Excellent EUV Source Progress: 70W EUV Power at required system operation conditions

2H-08

- Demonstration of source feasibility
- Burst length = 1mSec
- Power = 20W

Sept-09

- Full size collector implemented
- Dose control implemented
- 30mu droplets
- Debris mitigation operational
- Burst Length = 400mSec (full exp. field)
- Power = 70W (>3x improvement)

~2x power increase required for 60 WPH

Source: Cymer, LT1 setup data

Dose Stability of ±0.35% demonstrated by applying Closed Loop Control

- Open loop dose performance is +/-11% (10ms window)
- Closed loop dose performance is +/-0.35%.
- EUV power level set point for closed loop control was 50W

Optics: NXE:3100 Flare <7%, good uniformity

NXE:3100 has 30% more transmission then ADT

Lens quality measured with EUVL interferometer

- 13.5nm interferometer used to qualify lenses
- 0.1nm reproducibility
- 0.7nm wavefront rms

Shipment container tests completed (B747)

 Loading & fit test in B747 was successful, MOU signed by KLM/AF

ASML EUVL manufacturing area operational Photo during Install of raised floor in EUV Cabin

Outline

- Introduction
 - System roadmap
 - Platform layout
- Building the NXE:3100
 - NXE3100 main specifications & technology
 - Vacuum technology
 - Design & integration strategy
 - Status of main system modules
 - Preparation for volume production & shipment
- Outlook & summary

Outlook NXE:3300 main specifications

- 1st shipment: 1Q 2012
- NA = 0.32
- Sigma = 0.9, conventional
- Resolution 22 nm hp
- (18 nm with optional off-axis)
- SMO = 3.5 nm
- MMO = 5.0 nm
- TPT = $125 \text{ wph } (15 \text{ mJ/cm}^2 \text{ resist})$
- 2nd generation of NXE platform

Summary

- NXE platform design in place
- Optics and source delivered to ASML and integrated
- Modules like wafer-/reticle stage, reticle-/wafer handler, reticle masking, alignment-/level sensors build and functionally integrated
- System top/mid/bottom build and integration ongoing
- NXE:3100 system in build phase
- 1st shipment NXE3100 mid 2010
- Second generation with high NA optics planned for 1st half 2012

Acknowledgements

- The work presented has been the result of a hard work by teams at ASML and many technology partners worldwide over many years with a common goal to make EUV lithography happen.
- Grateful acknowledgement is expressed to the Public Authorities of The Netherlands, Germany and France for their outstanding support of the EAGLE- EUV Advanced Generation Lithography in Europe - project, as well as the MEDEA+ organization.

MEDEA+ Σ !2365 is the industry-driven pan-European program for advanced co-operative R&D in microelectronics to ensure Europe's technological and industrial competitiveness in this sector on a worldwide basis

